Array-Oriented
Programming with NumPy
- Part 2

1. array Operators

2. Broadcasting

3. Universal Functions (Vectorization)

array Operators

The slowness of loops

The speed of computations on NumPy arrays can range from very fast to very slow. To

optimize performance, the recommended approach is to use vectorized operations,
which are typically implemented through NumPy 's universal functions (ufuncs).

The speed of computations on NumPy arrays can range from very fast to very slow. To

optimize performance, the recommended approach is to use vectorized operations,
which are typically implemented through NumPy 's universal functions (ufuncs).

In scenarios involving numerous small operations executed repeatedly, the inherent
latency of Python often becomes noticeable. This is particularly the case when looping
over arrays to perform operations on each element.

The speed of computations on NumPy arrays can range from very fast to very slow. To

optimize performance, the recommended approach is to use vectorized operations,
which are typically implemented through NumPy 's universal functions (ufuncs).

In scenarios involving numerous small operations executed repeatedly, the inherent
latency of Python often becomes noticeable. This is particularly the case when looping
over arrays to perform operations on each element.

def compute reciprocals(values):
output = np.empty(len(values))
for i in range(len(values)):
output[i] = 1.0 / values[i]
return output

values = np.random.randint(1, 10, 5)
print(values)
compute reciprocals(values)

[54 4 3 5]

array([0.2 , 9.25 , 9.25 , ©.33333333, 0.2 1

values = np.random.randint(1, 10, 5)

print(values)
compute reciprocals(values)

[54 4 3 5]

array([0.2 , 9.25 , 0.25 , ©.33333333, 0.2 1

But if we measure the execution time of this code for a large input, we see that this
operation is very slow:

values = np.random.randint(1, 10, 5)

print(values)
compute reciprocals(values)

[54 4 3 5]

array([0.2 , 9.25 , 0.25 , ©.33333333, 0.2 1

But if we measure the execution time of this code for a large input, we see that this
operation is very slow:

big array = np.random.randint(1, 10, 1 000 000)

values = np.random.randint(1, 10, 5)

print(values)
compute reciprocals(values)

[54 4 3 5]

array([0.2 , 9.25 , 0.25 , ©.33333333, 0.2 1

But if we measure the execution time of this code for a large input, we see that this

operation is very slow:

big array = np.random.randint(1, 10, 1 000 000)

%ktimeit
compute reciprocals(big _array)

1.21 s + 10.4 ms per loop (mean = std. dev. of 7 runs, 1 loop each)

In NumPy , vectorization is the process of performing operations on entire arrays of
data, as opposed to individual elements. This is accomplished by applying an operation to
the entire array, instead of looping through each element of the array one at a time.

In NumPy , vectorization is the process of performing operations on entire arrays of
data, as opposed to individual elements. This is accomplished by applying an operation to
the entire array, instead of looping through each element of the array one at a time.

print(values)
1.0 / values # The vectorized version of the above code

[54 4 3 5]

array([0.2 , 0.25 , 0.25 , ©.33333333, 0.2 1

In NumPy , vectorization is the process of performing operations on entire arrays of
data, as opposed to individual elements. This is accomplished by applying an operation to
the entire array, instead of looping through each element of the array one at a time.

print(values)
1.0 / values # The vectorized version of the above code

[54 4 3 5]

array([0.2 , 0.25 , 0.25 , ©.33333333, 0.2 1

The above syntax is the vectorized version of the original code and works due to the
broadcasting.

Looking at the execution time for our big array, we see that it completes orders of
magnitude faster than the Python loop:

Looking at the execution time for our big array, we see that it completes orders of
magnitude faster than the Python loop:

%ktimeit
(1.0 / big array)

2.09 ms = 107 ps per loop (mean * std. dev. of 7 runs, 100 loops each)

Looking at the execution time for our big array, we see that it completes orders of
magnitude faster than the Python loop:

%ktimeit
(1.0 / big array)

2.09 ms = 107 ps per loop (mean * std. dev. of 7 runs, 100 loops each)

The execution time is much faster since the vectorization operation is done via ufuncs,
which is a compiled routine.

Element-wise arithmetic

NumPy offers numerous operators that allow us to create simple expressions that carry
out operations on whole arrays and returns another array . Firstly, let's perform
element-wise arithmetic with arrays and a scalar value by employing arithmetic
operators and augmented assignments.

NumPy offers numerous operators that allow us to create simple expressions that carry
out operations on whole arrays and returns another array . Firstly, let's perform
element-wise arithmetic with arrays and a scalar value by employing arithmetic
operators and augmented assignments.

Element-wise operations are applied to each element, so the snippet below doubles every
element and cubes every element. Each operation returns a new array containing the
result:

NumPy offers numerous operators that allow us to create simple expressions that carry
out operations on whole arrays and returns another array . Firstly, let's perform
element-wise arithmetic with arrays and a scalar value by employing arithmetic
operators and augmented assignments.

Element-wise operations are applied to each element, so the snippet below doubles every
element and cubes every element. Each operation returns a new array containing the
result:

numbers

= np.arange(1, 7) # array([1, 2, 3, 4, 5, 6])
numbers * 2

array([2, 4, 6, 8, 10, 12])

NumPy offers numerous operators that allow us to create simple expressions that carry
out operations on whole arrays and returns another array . Firstly, let's perform
element-wise arithmetic with arrays and a scalar value by employing arithmetic
operators and augmented assignments.

Element-wise operations are applied to each element, so the snippet below doubles every
element and cubes every element. Each operation returns a new array containing the
result:

numbers = n
numbers * 2

p.arange(1, 7) # array([1, 2, 3, 4, 5, 6])
array([2, 4, 6, 8, 10, 12])

numbers ** 3

array([1, 8, 27, 64, 125, 216], dtype=int32)

Augmented assignments modify every element in the left operand in place!

Augmented assignments modify every element in the left operand in place!

numbers += 10
numbers

array([11, 12, 13, 14, 15, 16])

In [13]: display quiz(path+"list_array2.json", max_width=800)

What is printed by the following statements?

[2, 4, 6]
[2 4 6]

Error
2 2 =2 [2 4 6]

Exercise 1: Given the function , estimate the integral of from to
using the Riemann sum.

Exercise 1: Given the function , estimate the integral of from to
using the Riemann sum.

A Riemann sum is a specific kind of approximation of an integral by a finite sum. It is
computed as follows:

Given a function, and a partition of the interval into subintervals, denoted by:

A Riemann sum of this function is constructed as:

Here, is an arbitrary point within each subinterval .

A Riemann sum of this function is constructed as:

Here, is an arbitrary point within each subinterval .

Riemann sums hold significant importance as they allow us to easily approximate a
definite integral, represented as:

In []: # 1. Define the function

def f(x):
return + + 1
2. Generate x values
a, b = , # integration Limits
n = 1000 # number of sub-intervals
dx =
X = np.linspace(___, , h) # left-endpoint grid

#
y

W

Compute y values correspind to the left-endpoints
f(x)

4. Estimate the integral using the Riemann sum
riemann_sum =
print(f"Estimated integral (left Riemann sum, n={n}): {riemann_sum}")

The exact results
exact_integral = (2**3)/3 + (2**2) + 2 # [(x2?+2x+1) dx = x3/3 + x?2 + X
print(f"Exact integral: {exact_integral}")

Broadcasting

Typically, arithmetic operations necessitate two arrays of identical size and shape as
operands. When one operand is a scalar, NumPy carries out the element-wise calculations

as though the scalar were an array of the same shape as the other operand, but with the
scalar value present in all its elements.

This is referred to as broadcasting. For instance, numbers * 2 is equivalent to numbers
*[2, 2, 2, 2, 2, 2].

Typically, arithmetic operations necessitate two arrays of identical size and shape as
operands. When one operand is a scalar, NumPy carries out the element-wise calculations

as though the scalar were an array of the same shape as the other operand, but with the
scalar value present in all its elements.

This is referred to as broadcasting. For instance, numbers * 2 is equivalent to numbers
*[2, 2, 2, 2, 2, 2].

Broadcasting can also be applied between arrays of different sizes and shapes,

enabling concise and powerful manipulations. We will present more examples of
broadcasting later in this chapter when we introduce NumPy ‘s universal functions.

Arithmetic Operations Between arrays

Arithmetic operations and augmented assignments can be performed between arrays of
the same shape. Let's multiply the one-dimensional arrays numbers and numbers2,

each containing six elements:

Arithmetic operations and augmented assignments can be performed between arrays of
the same shape. Let's multiply the one-dimensional arrays numbers and numbers2,

each containing six elements:

import numpy as np

numbers = np.array([11, 12, 13, 14, 15, 16])

numbers2 = np.linspace(1.1, 6.6, 6)

numbers * numbers2 # array([11, 12, 13, 14, 15, 16]) * array([1.1, 2.2, 3..

array([12.1, 26.4, 42.9, 61.6, 82.5, 105.6])

Arithmetic operations and augmented assignments can be performed between arrays of
the same shape. Let's multiply the one-dimensional arrays numbers and numbers2,
each containing six elements:

import numpy as np

numbers = np.array([11, 12, 13, 14, 15, 16])

numbers2 = np.linspace(1.1, 6.6, 6)

numbers * numbers2 # array([11, 12, 13, 14, 15, 16]) * array([1.1, 2.2, 3..

array([12.1, 26.4, 42.9, 61.6, 82.5, 105.6])

The outcome is a new array created by multiplying the elements of each operand
element-wise — 11 * 1.1, 12 * 2.2, 13 * 3.3, and so on. Arithmetic operations
between arrays of integers and floating-point numbers result in an array of floating-
point numbers due to type conversion .

Let's see another example:

Let's see another example:

c = np.ones((3, 3))
c *c

array([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])

Let's see another example:

c = np.ones((3, 3))
c *c

array([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])

Note that the above operation is not matrix multiplication. To perform matrix
multiplication use the dot() method!

Let's see another example:

c = np.ones((3, 3))
c *c

array([[1., 1., 1.],

[1., 1., 1.],
[1., 1., 1.1])

Note that the above operation is not matrix multiplication. To perform matrix
multiplication use the dot() method!

c.dot(c)

array([[3., 3., 3.],
[3., 3., 3.1,
[3., 3., 3.1])

The above operation is the same as using the @ operator:

The above operation is the same as using the @ operator:

c@c
array([[3., 3., 3.],

[3., 3., 3.1,
[3., 3., 3.1])

We can apply broadcasting to arrays with different shape. For instance, consider adding
a one-dimensional array to a two-dimensional array and observe the resulting
output:

We can apply broadcasting to arrays with different shape. For instance, consider adding

a one-dimensional array to a two-dimensional array and observe the resulting
output:

a = np.array([0, 1, 2])
M = np.ones((3, 3))

print(a.shape, M.shape) # Note a is not (3,1) or (1,3)
M+ a

(3,) (3, 3)
array([[1., 2., 3.],

[1., 2., 3.1,
[1., 2., 3.1])

We can apply broadcasting to arrays with different shape. For instance, consider adding
a one-dimensional array to a two-dimensional array and observe the resulting
output:

a = np.array([0, 1, 2])

M = np.ones((3, 3))

print(a.shape, M.shape) # Note a is not (3,1) or (1,3)
M+ a

(3,) (3, 3)

array([[1., 2., 3.],
[1., 2., 3.],
[1., 2., 3.]1])

Here, the one-dimensional array a is stretched, or broadcasted, across the second
dimension in order to match the shape of M.

Rules of Broadcasting

In NumPy , broadcasting adheres to a strict set of regulations that govern how two
arrays interact with one another. These rules are as follows:

1. When the number of dimensions between two arrays differs, the array with
fewer dimensions is padded with ones on its leading (left) side to match the
number of dimensions of the other array.

2. If the shape of the two arrays doesn't match in any dimension, the array with a
shape of 1 in that dimension is expanded to match the shape of the other array.

3. If the sizes of the arrays conflict in any dimension and neither is equal to 1, an
error is raised.

Now let's take a look at an example where both arrays need to be broadcast:

Now let's take a look at an example where both arrays need to be broadcast:

a = np.arange(0, 40, 10).reshape(4,1)
b = np.arange(3)
print(a.shape, b.shape)
a, b
(4, 1) (3,)
(array([[@],
[1e],
[20],
[30]1]),

array([e, 1, 2]))

Now let's take a look at an example where both arrays need to be broadcast:

a = np.arange(0, 40, 10).reshape(4,1)
b = np.arange(3)

print(a.shape, b.shape)

a, b

(4, 1) (3,)

(array([[@],
[1€],
[20],
[3e]1]),

array([e, 1, 2]))

a+b

array([[o, 1, 2],
[10, 11, 12],
[20, 21, 22],
[30, 31, 32]])

This entire process can be depicted visually as follows:

This entire process can be depicted visually as follows:

10

20

30

0 0 0 0 1 2

10 10 | 10 10 1] 12
20 | 20| 20 20| 21} 22
30 | 30 | 30 30| 31| 32

Next, let's look at an example in which the two arrays are incompatible!

Next, let's look at an example in which the two arrays are incompatible!

np.ones((3, 2))
np.arange(3)

Q
nn

M.shape, a.shape

((3, 2), (3,))

Next, let's look at an example in which the two arrays are incompatible!

=
1

np.ones((3, 2))
np.arange(3)

Q
1

M.shape, a.shape

((3, 2), (3,))

M+ a

ValueError Traceback (most recent call
last)

~\AppData\Local\Temp\ipykernel 39884\3374645918.py in

---->1 M+ a

ValueError: operands could not be broadcast together with shapes (3,2)

(3,)

In [23]: display_quiz(path+"broadcasting.json", max_width=800)

What is printed by the following statements?

E=2= == =29

None of the abov
e

ValuaTrror: creranTa ool

Exercise 2: Suppose we are dealing with a spreadsheet that
records the grade of students. The grade contains the homework,
midterm and finals as follows:

Name HW1 HW2 HW3 HW4 Midterm Final
Alice 90 80 70 100 90 95
Bob 80 90 100 70 85 80
Charlie 70 100 90 80 95 90
David 60 70 80 90 85 100
Eve 50 60 70 80 75 90

We would like to calculate the semester score of each student by the following rules:

1. The weight of each score is 0.2 (the summation of four homework accounts for
20% of the total scores and each homework has the same weight), 0.4 and 0.4 for
HW, Midterm and Final, respectively.

2. We adjust each student's score so that the top performer in the class gets a score
of 100 by adding the same constant score to each student's score.

We use a 2D array to model the grades so that each row corresponds to a student's score.
Use the following template to complete the task:

grades = np.array([[90,
[80,
[70,
[60,
[50,

weights = np.array([])
scores

80, 70, 100, 90, 95],
90, 100, 70, 85, 80],
100, 90, 80, 95, 90],
70, 80, 90, 85, 100],
60, 70, 80, 75, 90]1])

In []:

input data

grades = np.array([[90,
[80,
[70,
[60,
[50,

80, 70, 100, 90, 95],
99, 100, 70, 85, 80],
100, 90, 80, 95, 90],
70, 80, 90, 85, 100],
60, 70, 80, 75, 90]])

weights of HW, Midterm, Final

weights = np.array([])

calculate weighted score

scores

Universal Functions (Vectorization)

Now we will delve into how NumPy perform element-wise operations on arrays without
using the for loop: NumPy provides most operators/functions as standalone universal
functions (ufuncs) that perform various operations element-wise, meaning that they
apply the same operation to each element in an array .

Now we will delve into how NumPy perform element-wise operations on arrays without
using the for loop: NumPy provides most operators/functions as standalone universal
functions (ufuncs) that perform various operations element-wise, meaning that they
apply the same operation to each element in an array .

These functions operate on one or two array -like arguments and are utilized to perform
tasks. Some of these functions are automatically invoked when operators like + and *
are used with arrays . Each ufunc generates a new array that contains the results of

the operation.

NumPy offers a practical interface that directly access these statically typed and compiled
routines. These operations are called vectorized operations. \/ectorization is achieved
using array operations, such as addition, subtraction, multiplication, and division. In

addition, it can also be achieved by using other ufunc.

These vectorized methods are intended to move the loop to the compiled layer that
underpins NumPy , leading to considerably quicker execution.

Exploring NumPy 's Ufuncs

Let's add two arrays with the same shape, using the add() universal function:

Let's add two arrays with the same shape, using the add() universal function:

import numpy as np

numbers = np.array([11, 12, 13, 14, 15, 16])

numbers2 = np.arange(10, 70, 10) # array([16, 20, 30, 40, 50, 60])
np.add(numbers, numbers2) # equivalent to numbers + numbers2

array([21, 32, 43, 54, 65, 76])

Broadcasting with Universal Functions

Let's use the multiply() universal function to multiply every element of numbers2 by
the scalar value 5:

Let's use the multiply() universal function to multiply every element of numbers2 by
the scalar value 5:

np.multiply(numbers2, 5) # equivalent to numbers2 * 5

array([50, 100, 150, 200, 250, 300])

Let's reshape numbers2 into a 2-by-3 array, then multiply its values by a one-
dimensional array of three elements:

Let's reshape numbers2 into a 2-by-3 array, then multiply its values by a one-
dimensional array of three elements:

numbers3 = numbers2.reshape(2, 3)
numbers4 = np.array([2, 4, 6])
numbers3, numbers4

(array([[10, 20, 30],
[40, 50, 60]]),
array([2, 4, 6]))

Let's reshape numbers2 into a 2-by-3 array, then multiply its values by a one-
dimensional array of three elements:

numbers3 = numbers2.reshape(2, 3)
numbers4 = np.array([2, 4, 6])
numbers3, numbers4

(array([[10, 20, 30],
[40, 50, 60]]),
array([2, 4, 6]))

np.multiply(numbers3, numbers4) # Equivalent to numbers3 * numbers4

array([[20, 80, 189],
[80, 200, 360]])

There are other special mathematical ufunc. Let's create an array and the values using
the sin() universal function:

There are other special mathematical ufunc. Let's create an array and the values using
the sin() universal function:

numbers = np.array([1, 4, 9, 16, 25, 36])
np.sin(numbers)

array([©.84147098, -0.7568025 , ©.41211849, -0.28790332, -0.1323517
5,
-0.99177885])

Vectorization and ufunc functions are closely associated with broadcasting in NumPy . By

combining vectorization, ufunc functions, and broadcasting, we can effectively execute
complex arithmetic operations on NumPy arrays .

However, it's important to mention that vectorization can be achieved through methods
other than just using ufuncs.

Create our own vectorizing functions

The vectorized operation are often more concise, and it is thus advisable to avoid
element-wise looping over vectors and matrices and instead employ vectorized
algorithms.

The first step in converting a scalar algorithm to a vectorized algorithm involves verifying
that the functions we create can function with vector inputs:

The vectorized operation are often more concise, and it is thus advisable to avoid
element-wise looping over vectors and matrices and instead employ vectorized
algorithms.

The first step in converting a scalar algorithm to a vectorized algorithm involves verifying
that the functions we create can function with vector inputs:

def Theta(x, th):

Scalar implemenation of a variant of Heaviside step function.

if x >= th:
return 1
else:
return o

44 | 53

We can achieve this using np.vectorize() function:

We can achieve this using np.vectorize() function:

Theta_vec = np.vectorize(Theta)
Theta vec(np.array([-3,-2,-1,0,1,2,3]), 1)

array([@, @, ©, 0, 1, 1, 1])

In [31]: display_quiz(path+"universal.json", max_width=800)

Which of the following are NumPy universal functions (ufuncs)? (Select all that

apply)

np.add np.sqrt

math.sqrt np.dot

Exrercise 3: Compare the performance between for loop and
NumPy vectorization in calculating the Wallis formula:

500 24 2i
2 x [[;Z1(577 X 5717)- Be sure to check the results from

the two approaches are the same and close enough to the true
value of 7. Finally, report the speedup factor of the NumPy

vectorization.

Hint: Use %%timeit to measure the performance of the code. In addition, look up the
official documentation or use copilot to find the NumPy function to calculate the product
of an array using vectorization.

def wallis loop(n=N_TERMS):
product = 1.0
for i in range(1, n + 1):
product *= (2*i)/(2*i - 1)
product *= (2*i)/(2*i + 1)
return 2 * product
Your code here
def wallis vec(n=N_TERMS):

i = np.arange(5 , dtype=float) # Create a 1-D NumPy array [1, 2, .
terms = # Compute each factor (2i)/(21-1)*(21)/(2i+1) element
return 2 * np. (terms) # Multiply all factors together and scale by

approx = wallis vec()

print(f"Wallis approximation : {approx:.12f}")

print(f"n : {np.pi:.12f}")

print(f"absolute error : {abs(approx - np.pi):.6e}")

assert np.allclose(approx, wallis loop()), "implementations disagree!"

approx = wallis vec()

print(f"Wallis approximation : {approx:.12f}")

print(f"n : {np.pi:.12f}")

print(f"absolute error : {abs(approx - np.pi):.6e}")

assert np.allclose(approx, wallis loop()), "implementations disagree!"

%%ktimeit -o
wallis loop()

approx = wallis vec()

print(f"Wallis approximation : {approx:.12f}")

print(f"n : {np.pi:.12f}")

print(f"absolute error : {abs(approx - np.pi):.6e}")

assert np.allclose(approx, wallis loop()), "implementations disagree!"

%%ktimeit -o
wallis loop()

%%timeit -o
wallis vec()

In summary:

To make the code faster using NumPy

Use views instead of copies whenever possible

Broadcasting: Use broadcasting to do operations on arrays

Vectorizing for loops: Find tricks to avoid for loops using NumPy arrays .

In place operations: a *= 3 instead of a = 3*a

The comparisons between 1list and array are summarized as follows:

Python objects:

e Python lists are very general. They can contain any kind of object and are
dynamically typed
e However, they do not support mathematical functions such as matrix

multiplications. Implementing such functions for Python 1lists would not be
very efficient because of the dynamic typing

NumPy provides:

e Numpy arrays are statically typed and have the same data type. The type of
the elements is determined when the array is created

e Because of this static typing, NumPy can utilize fast implementation of
mathematical functions using a compiled language (NumPy uses C and Fortran).
This contributes to their computational and memory efficiency.

e For scientific computing tasks where efficiency and mathematical operations are

key, it is generally recommended to use NumPy arrays to model and manipulate
the data.

In [39]: from jupytercards import display flashcards
fpath= "flashcards/"
display flashcards(fpath + 'ch9-2.json'")

Vectorization

Next

	array operators
	The slowness of loops
	Element-wise arithmetic

	Broadcasting
	Arithmetic operations between arrays
	Rules of broadcasting

	Universal functions
	Exploring NumPy's Ufuncs
	Broadcasting with universal functions
	Creating our own vectorizing functions

